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In this letter, we couple a multi-stable metamaterial to an elastic foundation to realize a mechanical system
within which the position of a transition wavefront can be precisely controlled and remotely determined. This
ability is enabled, in part, by a (strain-)tunable potential energy landscape which conveys the wavefront from
one stabilizing defect site to another. In separating two, acoustically distinct domains, the wavefront reflects
small-amplitude waves of appropriate frequency back toward the source whereupon the time interval between
excitation and echo reveals the position of the front. In a combined theoretical and numerical study, we
exploit these mechanisms for mechanical multi-level memory which may find application, e.g., in soft robots
as a flexible alternative to current rigid memory technologies. In general, we anticipate that the concepts
presented here for a command of the transition wave position will further the development and applicability
of multi-stable metamaterials.

(Multi-)ferroics1 are crystalline materials whose unit
cells notably exhibit multiple, energetically-equivalent
stable configurations (i.e., phases, states) distinguished
by one or more order parameters and, possibly, by
unique physical properties. Within a given sample,
each stable configuration may appear simultaneously,
organized into regions of uniform phase (i.e., domains)
separated by an interface (i.e., domain wall). Under
the influence of a conjugate field2, the domain wall may
become mobile, transforming the local configuration in
its path; thus, constituting a transition wave. These
attributes hold considerable promise for nano-electronics
applications3, including, e.g., high-density memory4

and re-configurable circuits5,6. The former interprets
two given configurations as bits “0” and “1” while
the latter leverages the enhanced conductivity of the
domain wall (i.e., transition wavefront) and its ability
to be re-positioned. Apparently, the manipulation of
domains and domain walls in (multi-)ferroics is critical
to developing their functionality and, therefore, remains
an active area of research in condensed matter physics.
A persistent challenge, however, lies in accessing the
relevant length/time scales for precision control.

Recently, similar physics has been elicited at the
structural level from mechanical metamaterials whose
3D-printable unit cells realize a non-convex potential
function in a strain/displacement order parameter7.
Numerous studies have been devoted to characterizing
the motion of domain walls under various conditions8–13.
In particular, Hwang and Arrieta10 show monotonically
decreasing elastic potentials to support uni-directional,
multi-mode propagation which enables phase reversals.
Jin et al.14 demonstrate the utility of “hard” point
defects (i.e., unit cells storing no deformation energy)
in controlling the speed/direction and contour of a
transition wavefront in a 2D environment. Together
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with an understanding of the physics of transition
waves, the enhanced accessibility of the metamaterial
internal architecture permits a tailorable response that
has, so far, inspired proposals for, e.g., locomotion15–17,
signal transmission9,18, tunable acoustic filtering19, and
mechanical logic operations20 which promise flexible,
mechanical alternatives to rigid electronics in otherwise
soft robots and smart structures.

Inspired by these earlier works, in this letter, we
propose a structural design leveraging a multi-stable
metamaterial for mechanical multi-level (i.e.,
high-density) memory functionality. The concept
may find utility in soft robotics, especially, the emerging
paradigm of physical reservoir computing21. The
basic operation of the proposed memory element –
supported by theoretical and numerical analysis –
relies on both large- and small-amplitude dynamics
of the metamaterial: the former (transition waves)
for the write operation and memory stability; the
later (harmonic waves) for the read operation. The
proposed design, method, and results are distinct from
similar implementations of multi-stable architectures for
mechanical (i.e., low-density) memory that, conversely,
do not support transition waves and store only one bit
per cell22,23.

Figures 1a,b display schematics of the proposed
mechanical multi-level memory element, comprising two
discrete, one-dimensional chains, i.e., the substrate (SS)
and the metamaterial (MM), with periodic and uniform
inter-site coupling, sj+1/2 and kr, respectively. The
two chains are connected locally through a non-linear
spring (henceforth, associated with the metamaterial)
adhering to the non-convex potential, ψ(∆j), ∆j =
vj − Vj , providing for the formation of transition waves.
The system is an adaptation of the LOC arrangement
utilized by Ramakrishnan and Frazier19 for spontaneous
alterations to the effective stiffness distribution in
metamaterials. The corresponding non-dimensional
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Lagrangian is given by [SI]

L =

N∑
j=1

[
1

2
(v̇2j + V̇ 2

j )− αjψ(∆j)

]
− · · ·

1

2

N−1∑
j=1

[
(vj − vj+1)

2 + sj+1/2(Vj − Vj+1)
2
]
,

from which the governing equations (with on-site viscous
damping, η) of an arbitrary site j are derived as

v̈j + ηv̇j+(2vj − vj+1 − vj−1) + αj
∂ψ(∆j)

∂vj
= 0, (1a)

V̈j + ηV̇j+sj+1/2(Vj − Vj+1) + · · ·

sj−1/2(Vj − Vj−1) + αj
∂ψ(∆j)

∂Vj
= 0, (1b)

where αj = (1 + γj)[1 + βδij ] is a positive
scalar responsible for effecting (i) the element-wide
amplification/attenuation of the on-site potential as
prescribed by the parameter, γ = (−∞,∞), and (ii) the
nature and distribution of “soft” point defects (i.e., unit
cells storing anomalous deformation energy) as controlled
by the parameter, β ∈ (−1,∞), and the Kronecker delta,
δIj , I = {j|(j/J) ∈ N} with period J ∈ N.

In order to elicit the desired functionality, the system
adheres to certain design requirements. For one,
ψ(∆j) possesses n ≥ 2 degenerate ground states,
∆j = {∆s1,∆s2, . . . ,∆sn}, supporting the formation
of a (anti-)kink wave profile, yet, is asymmetric such
that the linear on-site stiffness about each ground state,
ksi = ψ′′(∆si), is unique (Fig. 1c.i). For another,
the αj vary monotonically (here, linearly) across the
element except at p periodically-distributed defect sites,
I, where, for β < 0 (β > 0), αj is less (greater)
than the neighboring αj±1 in order to create a locally
attractive (repulsive) potential suitable for immobilizing
transition waves. The monotonic variation otherwise
supports the uni-directional propagation of both kink
and anti-kink modes10, permitting the present state,
acquired by the passage of one transition wave, to
be reversed by the passage of another of the opposite
topological charge. The soft defects divide the system
into p levels of J unit cells, each of which may be
assigned an m-bit binary value where m = ⌊log2(p)⌋
(Fig. 1a). Finally, although the substrate is pliable,
proper function requires sj+1/2 to be, effectively, rigid
in comparison to kr(≡ 1 when non-dimensionalized) and
ksi, i.e., min(sj+1/2) ≫ max(kr, ksi). This relative
rigidity ensures that the inhomogeneous strain that arises
in the substrate upon the application of a prescribed
boundary displacement is, effectively, reproduced in
the metamaterial. Moreover, the stark difference in
compliance allows for the dynamics of the metamaterial
subsystem to treated in isolation at low frequencies, i.e.,
described by Eq. (1a) with a foundation of fixed Vj .
Of the myriad possible periodic functions, the substrate

FIG. 1. Mechanical multi-level Memory. (a) Schematic of
the mechanical (8-bit) memory element comprising p levels of
J unit cells, including a defect cell. Each level is assigned a
binary-encoded value for 0 to p − 1. (b) Detail of three unit
cells (lattice constant a) of the substrate and metamaterial
(MM) mass-spring chains comprising the element and locally
coupled via non-linear springs generating a non-convex
potential. (c) (i) The non-convex on-site potential (black) and
corresponding local stiffness (red) supporting the formation
of (ii) transition wavefronts separating domains of opposing
ground state configurations, ∆si, with characteristic on-site
stiffness, ksi.

stiffness is modulated by a triangle wave

sj+1/2 =
2(smax − smin)

Js
· · ·

×
∣∣∣∣(j − j0 −

Js
2

)
mod(Js)−

Js
2

∣∣∣∣+ smin

(2)

with period, Js, offset, j0, and minimum (maximum)
value set by smin (smax).

Consider, for example, the case in which γ, β < 0 such
that αj progressively reduces the on-site potential and
establishes an energy well at the defect sites. A transition
wave initialized at the left boundary will propagate to
the right with constant speed10,12 until entering and,
with the aid of dissipative effects, becoming pinned (i.e.,
immobilized) within the potential well established by
a soft defect. However, as discussed below, deforming
the substrate modifies the energy landscape governing
the transition wave motion, providing a mechanism for
de-pinning and mobilizing the wave, even if only to
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TABLE I. Parameters
metamaterial substrate ψ

γ β J Js j0 a b c d

Case I −2.5×10−4 −1/5 100 200 81 0.2582 0.0172 7.4489 0.0061
Case II −1.3̄×10−4 −1/20 25 50 17 0.2582 0.0172 7.4489 0.0380

become pinned again at the next defect site. The
pinned position of the wavefront may be determined
from the time of flight of a small-amplitude harmonic
signal initiated at either boundary and reflected off
the front due to the incompatible dynamics of the
domains (i.e., regions of homogeneous ∆si and ksi) that
it separates. Thus determined, the current memory
state is revealed as the number of consecutive levels
in the configuration arbitrarily designated as, e.g., the
“active”, “ON”, or “1” phase (here, ∆s2 is active); the
opposing configuration fittingly labeled the “inactive”,
“OFF”, or “0” phase. The element is the mechanical
analogue of an electron CTF memory cell, where the two
mechanical phases are likened to two charge states; J
cells and defect sites are, respectively, likened to floating
gates and isolators; mechanical load likened to voltage.
Altogether, controlling and reading the defect-stabilized
position of the domain wall enables a multi-level memory
functionality.

In this letter, we define ψ(∆j) = d{1− cos[a(∆j + c)+
b(∆j + c)3]}, where a, b, c, and d are tuning parameters
that maintain an asymmetric potential with degenerate
ground states distinct in ksi. In practice, these qualities
may be realized, e.g., through the proper arrangement
and orientation of magnetic di-poles19.

The non-linearity of the metamaterial admits tailoring
its dynamic response by straining the memory element,
which alters the characteristic energy landscape dictating
transition wave motion24. To illustrate this effect,
we calculate the total potential energy, U(Xj), of the
metamaterial in a finite system under various levels
of prescribed strain as a function of the instantaneous
position, Xj = j, of a (anti-)kink wavefront. In
particular, we consider a system of N = 200 unit cells
constructed following the set of parameters given in Case
I of Table I. For analytical convenience, |γ| is chosen
sufficiently small to ensure that the supported (anti-)kink
exhibits a (effectively) permanent profile while traveling
the length of the system and that the ksi are (effectively)
independent of position. For this and the following
studies, the extrema of the substrate stiffness variation
adhere to smax : smin = 3 : 1.

Following a prescribed boundary displacement, the
interiors of the metamaterial and substrate each acquire
new equilibrium configurations, v0j and V 0

j . While U(Xj)
may be computed via simulation, this approach yields
an incomplete picture when the simulated transition
wave becomes pinned, preventing the energy from being
evaluated beyond Xj . It is more effective to utilize an

analytical model with prescribed X and the continuum
form of the total potential energy [SI]

U(X) =

∫ ℓ

0

[
α(x)ψ(v) +

1

2

(
∂v

∂x
+
∂v0
∂x

)2
]
dx, (3)

where ℓ = Na, and v0(x) and V0(x), respectively, model
the initial strain-induced equilibrium displacements of
the metamaterial and substrate. In general, exact
analytical expressions for v(x;X), v0(x), and V0(x) are
difficult to obtain from the corresponding continuum
governing equations; therefore, they are approximated
by fitting ansatzes to the discrete results from simulation
of Eq. (1). As the wave profile is assumed
constant across the memory element, we fit v(x;X) =
A arctan

[
B1e

C1(x−X) +B2e
C2(x−X)

]
to the simulated

(anti-)kink at rest in an unstrained, uniform system
[i.e., (γ, β) = (0, 0)] [SI]. For the initial equilibrium
displacements, the fitting function combines a linear
function and a qth-order Fourier expansion:

v0(x) = a0 + c0x+

q∑
n=1

an cos(nx) +

q∑
n=1

bn sin(nx),

where the fitting function for V0(x) has the same
form. For all studies, we find good agreement
between fitted curves and simulation results, limiting the
root-mean-square error to erms < 1.35× 10−4.

Figure 2a plots U(X) for various levels of initial
substrate strain, ε = ∆ℓ/ℓ, which may be physically
achieved via, e.g., pneumatic actuation with flexible
plumbing, electric actuation with an electro-active
polymer composing the substrate, or direct mechanical
loading. Here, we simply prescribe V1 = 0 and VN ̸= 0.
For ε = 0, there is a pronounced decrease in the potential
energy centered at the location of the soft defect (x = 0)
as α locally lowers the energy expenditure for switching
between stable states, representing a local attractor
which, aided by dissipative effects, may pin an incoming
transition wave. As |ε| increases, the defect energy
well shallows; consequently, the attractor is less able to
pin incoming waves and already pinned waves are more
susceptible to mobilization by external perturbation.
In addition, U develops strain-dependent local extrema
associated with locations where the gradient of the
substrate stiffness modulation changes sign (e.g., the
peak or trough of a triangle modulation) which,
appropriately, either attract or repel the transition
wave and, in doing so, alter the speed/direction of its
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FIG. 2. Strain-tunable Energy Landscape. (a) The energy landscape, U(X), encountered by a transition wave in the proposed
system under compressive and tensile pre-deformation. Under deformation, local energy extrema develop, reducing the pinning
ability of the soft defect energy well which, ultimately, promotes de-pinning. Embedded curve labels indicate the strain, ε×10−3.
(b) The simulated position of an initially-pinned anti-kink as the applied strain increases quasi-statically, revealing instances
of de-pinning and re-pinning in accordance to the changing profile of U(X) for smin located (i) before, (ii) at, and (iii) after the
soft defect. (c) Profile of the substrate stiffness.

propagation. For the current system, under compression
(tension) a local maximum (minimum) develops in the
vicinity of smin; the opposite effect (not shown) manifests
in the vicinity of smax. The observed distortion in U
reflects the work done by the non-uniform load applied
to the metamaterial by the deformed substrate, revealing
pre-strain as a mechanism for spontaneously altering
the dynamics of transition waves in a host medium,
post-fabrication. For the (anti-)kink initially pinned at
x = 0, sufficient strain will effectuate de-pinning and
mobilization; although, due to the asymmetries inherent
to α(x), as well as the phase difference between δIj
and the substrate stiffness modulation, the critical strain
at which this occurs and the direction of propagation
depends on the deformation mode. These effects are
illustrated in Fig. 2b. The first row of Fig. 2b tracks
the simulated position the anti-kink wavefront initially
pinned at x = 0 as |ε| quasi-statically increases. For
a sufficient strain, energy extrema not aligned with
the defect location, ultimately, induce de-pinning and
compel the newly-liberated wavefront to seek an another
potential minima, which is achieved by propagating to
either the system boundaries or a strain-induced minima
whereupon it is pinned again (Fig. 2b.i,iii). For a
sufficient strain, de-pinning and propagation may still
occur when the maxima is aligned with defect location –
though, under a significantly higher magnitude of strain
– due to the asymmetry established by α(x) (Fig. 2b.ii).

Altogether, these results demonstrate the utility of
soft defects and prescribed strain in modifying the
energy landscape to effect the pinning, de-pinning, and
propagation speed/direction control of transition waves
which we exploit for mechanical multi-level memory.

Turning our attention to the propagation of
small-amplitude harmonic signals, for the hypothetical
scenario of an infinite, undeformed system of
homogeneous ground state configuration, the application
of Bloch’s theorem to the linearized and lossless form
of Eq. (1a) yields the characteristic dispersion relations
for small-amplitude waves confined to the metamaterial
[SI]:

2 + ksi −
1

ϑ
− ϑ = ω2, (4)

where ω is the dimensionless temporal frequency and
ϑ = eiκa is the propagation constant with dimensionless
complex wavenumber, κa. In formulating Eq. (4), we
have assumed (γ, β) = (0, 0), which is reasonable in the
scenario where (as is the case here), in constructing the
(finite) mechanical memory element, both γ and β are
kept small as are the number and density of pinning
sites, and the size of the system does not result in
a large discrepancy between corresponding ksi at each
boundary. In solving Eq. (4) for ϑ(ω), propagating and
attenuating wave modes are extracted, respectively, as
κRa = |Re(i lnϑ)| and κIa = |Im(i lnϑ)|. Figure 3a
displays the dispersion curves for a system consistent
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FIG. 3. Dynamics of Small-Amplitude Waves. (a)
The propagating and attenuating frequency bands of the
metamaterial homogeneous in state ∆s1 (red) and state
∆s2 (blue). (b) History of a harmonic pulse (according
to v1) injected into the metamaterial with transition wave
(insets) pinned at different locations: (i) j = 51 and (ii)
j = 101. The elapsed time, ∆t, between signal injection
and echo (threshold, vth = 7.5 × 10−3) correlates to the
distance between the injection site (j = 1) and the transition
wavefront. (a) Infinite and (b) finite models consistent with
Case II, Table I.

with Case II of Table I, revealing the non-overlapping
frequency ranges of the respective propagating modes.

For the finite system supporting a pinned transition
wave which separates domains with unique ksi, the
results in Fig. 3a suggests that a propagating signal
stimulated in one domain cannot enter the second domain
if the Fourier components are not supported there.
Instead, at the domain wall, the wave energy is reflected
back toward the source as an echo. To demonstrate this,
we simulate the response of a finite system (N = 200) to
a Gaussian-modulated harmonic pulse stimulated within
the metamaterial where a pinned anti-kink separates
opposing regions of ks2 (left) and ks1 (right). For an
excitation at the left end, the displacement prescription
has the form:

v1(t) =


vs2 +Aexp

[
− 1

2

(
t−t0
σ

)2]
sin(ωct), t ≤ 2t0

not prescribed, t > 2t0

where ωc and σ are, respectively, the carrier frequency

and the standard deviation. The corresponding velocity
at the left boundary, v̇1(t), is also enforced. In particular,
the carrier frequency is restricted to lie within the
propagating band associated with the designated active
configuration. Here, we select ωc = 2.4. For the
Gaussian envelope, σ = 8 and t0 = 6σ. As only
the small-amplitude response is of interest, we limit the
excitation amplitude to A = 0.01. For the numerical
analyses, we apply the Noh-Bathe integration scheme25

to Eqs. (1) with η = 1/250. Figure 3b plots both
the resulting displacement magnitude, vm(t) = |v1(t)|,
and its smoothened, time-averaged counterpart defined
by the convolution, vc(t) = [vm · h](t), where h(t) is
a rectangular window function of width, T = 16π/ωc,
centered at t. Naturally, the elapsed time, ∆t, between
signal generation and the returned echo [identified by
vc(t) > vth for t > 2t0, vth a threshold value] changes
with distance between the boundary excitation (i.e., the
source) and the domain wall. This correlation is exploited
in the mechanical multi-level memory element to infer the
location of the pinned domain wall and, thus, identify the
current memory state.

We bring together the physics of small- and
large-amplitude waves, of soft defects, as well as
the ability to tune the energy landscape in order to
assemble a mechanical system with multi-level memory
functionality, which we demonstrate numerically.
Specifically, we simulate the response of an anti-kink
within a metamaterial-substrate system (N = 225)
under deformation due to a prescribed, quasi-static
boundary displacement. The relevant parameters are
listed in Case II of Table I, imbuing the metamaterial
sub-system with eight pinning sites sufficient for 3-bit
memory storage.

Figure 4a.i, an xt-contour diagram of the
configuration, ∆j , depicts the controlled advancement
of a transition wave across the memory element as
the system undergoes cycles of prescribed compressive,
tensile, and zero strain (Figure 4a.ii). The transition
wave is initially pinned at x = −75, representing level
0 with binary code 000. In practice, a (anti-)kink or
harmonic pulse may be injected from the boundary
with the aid of a solenoid actuator coupled to the
boundary site. Under a non-zero strain, a change in the
energy landscape releases and repels the domain wall
from its current pinned position and toward another
pinning site. Upon recovery of the zero strain condition,
the transition wave becomes pinned at a soft defect
site different from the one from which it originated
(presently, the subsequent pinning site). The inset
displayed Fig. 4 details each of these events. The
process is repeated until the domain wall is pinned to
the desired defect site (here, the final pinning site at
x = 100, representing level 7 with binary code 111).
Under the condition of zero strain and for the transition
wave pinned at an arbitrary defect site, the position of
the domain wall – thus, the memory state – may be
determined from the time of flight of a small-amplitude
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FIG. 4. Mechanical multi-level Memory Performance. (a) (i) The spatio-temporal evolution of the configuration, ∆, in the
memory element subject to (ii) a periodic schedule of of compressive, tensile, and zero strain. Detail of (i) shows the domain wall
1○ de-pinning and mobilization from a (permanent) soft defect at x = 0, and 2○ re-pinning, respectively, within (temporary)
local energy minima developed under increasing strain (i.e., ε ↑). As the strain decreases (i.e. ε ↓), 3○ the gradient in ψ
enforced by α drives the transition wave 4○ to the soft defect pinning site at x = 25. (b) Correlation between the domain wall
pinned position (syn., binary memory state) and the elapsed time, ∆t, between the injection and echo of a harmonic pulse.

signal injected into the metamaterial with appropriate
carrier frequency. Figure 4b shows the results of such
an exercise conducted in the numerical model when the
transition wave is pinned at each of the eight defect sites
where the more extended times correspond to higher
memory state.

Since γ < 0 and j0 places a strain-induced local energy
maximum and minimum, respectively, before and after
each pinning site, the transition wave is restricted to
unidirectional motion from left to right. Consequently,
to return the system to the inactive phase, ∆s1, a kink
may be established at x = −75 and conveyed across the
memory element by a similar cyclic prescription of strain
(Fig. 5). The complete process is animated in Mov. S1.

In summary, we have devised a mechanical system
within which the position of a transition wavefront can be
precisely controlled and remotely determined, which we
exploit for mechanical multi-level memory; yet, energy
harvesting and post-fabrication tuning of mechanical
properties represent additional opportunities. A
realization of the proposed memory architecture may find
application in soft robotics, providing a flexible (albeit,
rudimentary) alternative to current, ceramic-based
technologies. As the essential characteristics –
multi-stability, soft defects, and the proportional
relationship among stiffnesses – are independent of
scale, the proposed design, leveraging advancements
in 3D-printing, is amenable to later efforts aimed at
increasing memory density via miniaturization.

See supplementary material for further details
of equation derivations and an animation of the

strain-induced transition wave motion exhibited in Fig.
4.

This work is supported by start-up funds provided by
the University of California.

The data that supports the findings of this study
are available within the article and its supplementary

FIG. 5. Memory Reset. The memory is reset by initializing
and advancing a kink. Here, we prescribe an initial velocity,
v̇1 = −0.6148, to create the kink, and then, following a
settling period, advance the kink via the cyclic application
of strain.
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